In intensively managed forests in Europe, where forests are divided into stands of small size and may show heterogeneity within stands, a high spatial resolution (10 - 20 meters) is arguably needed to capture the differences in canopy height. In this work, we developed a deep learning model based on multi-stream remote sensing measurements to create a high-resolution canopy height map over the "Landes de Gascogne" forest in France, a large maritime pine plantation of 13,000 km$^2$ with flat terrain and intensive management. This area is characterized by even-aged and mono-specific stands, of a typical length of a few hundred meters, harvested every 35 to 50 years. Our deep learning U-Net model uses multi-band images from Sentinel-1 and Sentinel-2 with composite time averages as input to predict tree height derived from GEDI waveforms. The evaluation is performed with external validation data from forest inventory plots and a stereo 3D reconstruction model based on Skysat imagery available at specific locations. We trained seven different U-net models based on a combination of Sentinel-1 and Sentinel-2 bands to evaluate the importance of each instrument in the dominant height retrieval. The model outputs allow us to generate a 10 m resolution canopy height map of the whole "Landes de Gascogne" forest area for 2020 with a mean absolute error of 2.02 m on the Test dataset. The best predictions were obtained using all available satellite layers from Sentinel-1 and Sentinel-2 but using only one satellite source also provided good predictions. For all validation datasets in coniferous forests, our model showed better metrics than previous canopy height models available in the same region.
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
Machine learning has emerged recently as a powerful tool for predicting properties of quantum many-body systems. For many ground states of gapped Hamiltonians, generative models can learn from measurements of a single quantum state to reconstruct the state accurately enough to predict local observables. Alternatively, kernel methods can predict local observables by learning from measurements on different but related states. In this work, we combine the benefits of both approaches and propose the use of conditional generative models to simultaneously represent a family of states, by learning shared structures of different quantum states from measurements. The trained model allows us to predict arbitrary local properties of ground states, even for states not present in the training data, and without necessitating further training for new observables. We numerically validate our approach (with simulations of up to 45 qubits) for two quantum many-body problems, 2D random Heisenberg models and Rydberg atom systems.
translated by 谷歌翻译
彼此接触的任何两个物体都会仅仅是由于重力或机械接触而引起的力,例如机器人手臂抓住一个物体,甚至是我们膝关节处的两个骨头之间的接触。自然测量和监视这些接触力的能力允许从仓库管理(基于重量检测错误包装)到机器人技术(使机器人臂的抓地力与人类皮肤一样敏感)和医疗保健(膝关节植入物)的大量应用。设计一个无处不在的力传感器是充满挑战的,该传感器可自然地用于所有这些应用。首先,传感器应足够小,以适合狭窄的空间。接下来,我们不想铺设笨重的电缆来读取传感器的力值。最后,我们需要进行无电池设计以满足体内应用程序。我们开发了WiforCesticker,这是一种无线,无电池,类似贴纸的力传感器,可以在任何表面上都可以无处不在,例如所有仓库包装,机器人手臂和膝关节。 WiforCesticker首先设计一个$ 4 $ 〜mm〜 $ \ $ \ times $〜$〜$ 2 $ 〜mm〜 $ \ $ \ times $〜$〜$〜$ 0.4 $〜毫米电容传感器设计,配备了$ 10 $〜$〜$〜$〜$〜$〜$〜$ 〜mm〜mm 〜mm 〜mm 〜mm在灵活的PCB基材上设计。其次,它引入了一种新的机制,可以通过将传感器与COTS RFID系统插入传感器,从而无线读取器无线读取器可以通过无线读取器读取力信息。该传感器可以在多个测试环境中检测到$ 0 $ -6 $ 〜n的力量,感应精度为$ <0.5 $ 〜n,并在传感器上使用超过10,000美元的$ 10,000 $变化的力级按下。我们还通过设计传感器展示了两个应用程序案例研究,称量仓库包和骨接头施加的传感力。
translated by 谷歌翻译
我们提供了一种差异化私有算法,用于同时生成多个任务的合成数据:边际查询和多任务机器学习(ML)。我们算法中的一个关键创新是能够直接处理数值特征的能力,与许多相关的先验方法相反,这些方法需要首先通过{binning策略}将数值特征转换为{高基数}分类特征。为了提高准确性,需要较高的分子粒度,但这会对可伸缩性产生负面影响。消除对套在一起的需求使我们能够产生合成数据,以保留大量统计查询,例如数值特征的边际和条件线性阈值查询。保留后者意味着在特定半空间上方的每个类标记的点的比例在实际数据和合成数据中都大致相同。这是在多任务设置中训练线性分类器所需的属性。我们的算法还使我们能够为混合边缘查询提供高质量的合成数据,这些数据结合了分类和数值特征。我们的方法始终比最佳可比技术快2-5倍,并在边缘查询和混合型数据集的线性预测任务方面提供了显着的准确性改进。
translated by 谷歌翻译
反事实风险最小化是通过记录数据组成的脱机策略优化的框架,该数据由上下文,动作,倾向得分和每个样本点的奖励组成。在这项工作中,我们以此框架为基础,并为未观察到某些样本的奖励的设置提出了一种学习方法,因此记录的数据由具有未知奖励的样本子集和具有已知奖励的样本子集。此设置在许多应用领域,包括广告和医疗保健。虽然某些样本缺少奖励反馈,但可以利用未知的奖励样本来最大程度地降低风险,我们将此设置称为半遇到事实风险的最小化。为了解决这种学习问题,我们在反相反分数估计器下的真实风险中得出了新的上限。然后,我们基于这些界限,提出了一种正规化的反事实风险最小化方法,该方法仅基于已记录的未知奖励数据集;因此,这是奖励独立的。我们还提出了另一种算法,该算法基于为已记录的未知奖励数据集生成伪奖励。神经网络和基准数据集的实验结果表明,除了已记录已知的奖励数据集外,这些算法可以利用已记录的未知奖励数据集。
translated by 谷歌翻译
随着深度学习算法在时间序列分类中的应用越来越多,尤其是在高风化场景中,解释这些算法的相关性成为关键。尽管时间序列的可解释性研究已经增长,但从业者的可访问性仍然是一个障碍。没有统一的API或框架,使用的可解释性方法及其可视化的使用方式多样。为了缩小这一差距,我们介绍了TSInterpret易于扩展的开源Python库,用于解释将现有解释方法结合到一个统一框架中的时间序列分类器的预测。库功能(i)最先进的可解释性算法,(ii)公开了统一的API,使用户能够始终如一地使用解释,并为每种说明提供合适的可视化。
translated by 谷歌翻译
随着我们远离数据,预测不确定性应该增加,因为各种各样的解释与鲜为人知的信息一致。我们引入了远距离感知的先验(DAP)校准,这是一种纠正训练域之外贝叶斯深度学习模型过度自信的方法。我们将DAPS定义为模型参数的先验分布,该模型参数取决于输入,通过其与训练集的距离度量。DAP校准对后推理方法不可知,可以作为后处理步骤进行。我们证明了其在各种分类和回归问题中对几个基线的有效性,包括旨在测试远离数据的预测分布质量的基准。
translated by 谷歌翻译
联合学习已被引入新的机器学习范式,以增强本地设备的使用。在服务器级别,FL定期聚集在分布式客户端上本地学习的模型,以获得更通用的模型。当前的解决方案依赖于客户端的大量存储数据的可用性,以微调服务器发送的模型。这种设置在移动普遍计算中不现实,在该计算中必须保持数据存储较低,并且数据特征可能会发生巨大变化。为了解释这种可变性,解决方案是使用客户定期收集的数据来逐步调整接收到的模型。但是这种天真的方法使客户面临着灾难性遗忘的众所周知的问题。为了解决这个问题,我们定义了一种联合的持续学习方法,该方法主要基于蒸馏。我们的方法允许更好地利用资源,从而消除了在新数据到达时从头开始重新审阅的需求,并通过限制存储的数据量来减少内存使用量。该提案已在人类活动识别(HAR)领域进行了评估,并已证明可以有效地降低灾难性的遗忘效果。
translated by 谷歌翻译
联合学习已被引入新的机器学习范式,以增强本地设备的使用。在服务器级别,FL定期聚集在分布式客户端上本地学习的模型,以获得更通用的模型。这样,没有通过网络发送私人数据,并且降低了通信成本。但是,当前的解决方案依赖于客户端的大量存储数据的可用性,以微调服务器发送的模型。这种设置在移动普遍计算中不现实,在该计算中必须保持数据存储较低,并且数据特征(分布)可能会发生巨大变化。为了解释这种可变性,解决方案是使用客户定期收集的数据来逐步调整接收到的模型。但是这种天真的方法使客户面临着灾难性遗忘的众所周知的问题。本文的目的是在智能手机的移动人类活动识别环境中证明这个问题。
translated by 谷歌翻译